

Product Description SALSA[®] MLPA[®] Probemix P037-B1 CLL-1

To be used with the MLPA General Protocol.

Version B1. For complete product history see page 10.

Catalogue numbers:

- P037-025R: SALSA MLPA Probemix P037 CLL-1, 25 reactions.
- **P037-050R:** SALSA MLPA Probemix P037 CLL-1, 50 reactions.
- P037-100R: SALSA MLPA Probemix P037 CLL-1, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mlpa.com).

Certificate of Analysis: Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mlpa.com.

Precautions and warnings: For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mlpa.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information: The SALSA MLPA Probemix P037 CLL-1 is a **research use only (RUO)** assay for the detection of deletions or duplications in various genes and chromosomal regions implicated in B-cell chronic lymphocytic leukemia (B-CLL) such as: 2p (*MYCN, ALK, REL*), 6q (*TNFAIP3*), 8p (*TNFRSF10A*/*B*), 8q (*EIF3H, MYC*), 9p21 (*CDKN2A*/*B*), 11q (*ATM*), chromosome 12, 13q14 (*MIR15A, DLEU2*/*7*) and 17p (*TP53*).

B-CLL is the most common hematologic neoplasm in Western countries and results in the progressive accumulation of morphologically mature but functionally incompetent CD5(+) CD23(+) B lymphocytes in bone marrow, blood, spleen and lymph nodes of the affected person. Chromosomal translocations are rare events in B-CLL. Copy number changes of certain chromosomal regions are however frequent. Some of these have been found to be important prognostic markers of this disease.

The **P038 CLL-2** probemix contains more probes for the 11q region and different probes for chromosome 12, 13q14 and the *TP53* gene. Moreover, it contains probes targeting the *PTEN* gene, 14q, chromosome 19, and probes specific for *NOTCH1* p.P2514*fs, *SF3B1* p.K700E and *MYD88* p.L265P point mutations. The **P040 CLL** probemix contains a selection of target genes and regions from P037 and P038 for the detection of del13q14, trisomy 12, del11q22-q23, and del17p13. Other related probemixes can be found on page 8.

This SALSA MLPA Probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Probemix content: The SALSA MLPA Probemix P037-B1 CLL-1 contains 54 MLPA probes with amplification products between 130 and 500 nucleotides (nt). This includes 41 probes for 2p, 6q, 8p/q, 9p21, 11q, 12p/q, 13q and 17p chromosomal regions. In addition, 13 reference probes are included that target relatively copy number stable regions in CLL. Complete probe sequences and the identity of the genes detected by the reference probes are available online (www.mlpa.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mlpa.com.

Length (nt)	Name
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)
88-96	D-fragments (low signal of 88 nt and 96 nt fragment indicates incomplete denaturation)
92	Benchmark fragment
100	X-fragment (X chromosome specific)
105	Y-fragment (Y chromosome specific)

MLPA technique: The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mlpa.com). More information on the use of MLPA in tumour applications can be found in Hömig-Hölzel and Savola (2012).

MLPA technique validation: Internal validation of the MLPA technique using 16 DNA samples from healthy individuals is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤ 0.10 for all probes over the experiment.

Required specimens: Extracted DNA, which includes DNA derived from paraffin-embedded tissues, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol. More information on the use of FFPE tissue samples for MLPA can be found in Atanesyan et al. (2017).

Reference samples: A sufficient number (\geq 3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from healthy individuals without a history of cancer. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol.

Positive control DNA samples: MRC-Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/home.html) have a diverse collection of biological resources which may be used as a positive control DNA sample in your MLPA experiments. Sample ID numbers NA09216, NA00945, NA04409, NA01353, NA10401, NA09367, NA07994, NA06802, NA14485, NA03255, NA02030, NA03999, NA02819, NA03226, NA08618, NA09596, NA07981, NA05832, NA12606, NA03330, NA14164, NA13721 from the Coriell Institute and ACC-203 (SK-N-MC) from the Leibniz Institute DSMZ have been tested with this P037-B1 probemix at MRC-Holland and can be used as a positive control samples to detect various CNAs as described in the table below. The quality of cell lines can change; therefore samples should be validated before use.

Sample name	Source	Chromosomal position of CNA	Altered target genes in P037-B1	Expected CNA
NA09216	Coriell Institute	2p24.3	MYCN	Heterozygous deletion
NA00945	Coriell Institute	2p24.3	MYCN	Heterozygous deletion
ACC203 SK-N-MC	Leibniz Institute DSMZ	2p24.3	MYCN	Heterozygous deletion
NA04409	Coriell Institute	2p24.3	MYCN	Heterozygous duplication
NA01353	Coriell Institute	2p24.3-p23.2	MYCN, ALK	Heterozygous duplication
NA10401	Coriell Institute	2p24.3-p16.1	MYCN, ALK, REL	Heterozygous duplication
NA09367	Coriell Institute	6q21-q23.3	SEC63, TNFAIP3	Heterozygous duplication
NA07994	Coriell Institute	6q23.3-q26	TNFAIP3, LATS1, IGF2R, PARK2	Heterozygous duplication
NA06802	Coriell Institute	6q25.3-q26	IGF2R, PARK2	Heterozygous deletion
NA14485	Coriell Institute	8p21.3	TNFRSF10A, TNFRSF10B	Heterozygous duplication
NA03255	Coriell Institute	8p21.3	TNFRSF10A, TNFRSF10B	Heterozygous duplication

SALSA MLPA Probemix P037 CLL-1

Product Description version B1-01; Issued 29 November 2019

-				
Sample	Source	Chromosomal	Altered target genes	Expected CNA
Indiffe				
NA02030	Coriell Institute	8p21.3-q24.21	TNFRSF10A, TNFRSF10B, EIF3H, MYC	Heterozygous duplication
ACC203 SK-N-MC	Leibniz Institute DSMZ	8p21.3-q24.21	TNFRSF10A, TNFRSF10B, EIF3H, MYC	Amplification
NA03999	Coriell Institute	8q24.21	МҮС	Heterozygous deletion
NA02819	Coriell Institute	9p21.3	CDKN2A, CDKN2B	Heterozygous duplication
NA03226	Coriell Institute	9p21.3	CDKN2A, CDKN2B	Heterozygous duplication
NA08618	Coriell Institute	11q22.3	ATM	Heterozygous duplication
NA09596	Coriell Institute	11q22.3	ATM	Heterozygous deletion
NA07981	Coriell Institute	12p13.32-p12.1	CCND2, LRMP	Homozygous duplication
NA02819	Coriell Institute	12q24.33	CHFR	Heterozygous deletion
NA05832	Coriell Institute	13q14.2-q14.3	RB1, FNDC3A, KCNRG, MIR15A, DLEU2, DLEU7, ATP7B	Heterozygous duplication
NA12606	Coriell Institute	13q14.2-q14.3	RB1, FNDC3A, KCNRG, MIR15A, DLEU2, DLEU7, ATP7B	Heterozygous duplication
NA03330	Coriell Institute	13q14.2-q14.3	RB1, FNDC3A, KCNRG, MIR15A, DLEU2, DLEU7, ATP7B	Heterozygous duplication
NA14164	Coriell Institute	13q14.2-q14.3	RB1, FNDC3A, KCNRG, MIR15A, DLEU2, DLEU7, ATP7B	Heterozygous deletion
NA13721	Coriell Institute	13q14.2-q14.3	RB1, FNDC3A, KCNRG, MIR15A, DLEU2, DLEU7, ATP7B	Heterozygous deletion
ACC203 SK-N-MC	Leibniz Institute DSMZ	17p13.1	TP53	Heterozygous deletion

Data analysis: Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mlpa.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results: The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 . When these criterion are fulfilled, the following cut-off values for the DQ of the probes can be used to interpret MLPA results for autosomal chromosomes or pseudo-autosomal regions:

Copy number status	Dosage quotient
Normal	0.80 < DQ < 1.20
Homozygous deletion	DQ = 0
Heterozygous deletion	0.40 < DQ < 0.65
Heterozygous duplication	1.30 < DQ < 1.65
Heterozygous triplication/Homozygous duplication	1.75 < DQ < 2.15
Ambiguous copy number	All other values

Please note that these above mentioned dosage quotients are only valid for germline testing. Dosage quotients are affected both by percentage of tumour cells and by possible subclonality.

- Arranging probes according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Incomplete DNA denaturation (e.g. due to salt contamination) can lead to a decreased probe signal, in particular for probes located in or near a GC-rich region or in or near the *MYCN* gene. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- Normal copy number variation in healthy individuals is described in the database of genomic variants: http://dgv.tcag.ca/dgv/app/home. Users should always consult the latest update of the database and scientific literature when interpreting their findings.

- Not all abnormalities detected by MLPA are pathogenic. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- Copy number changes detected by reference probes or flanking probes are unlikely to have any relation to the condition tested for.
- When running MLPA products, the capillary electrophoresis protocol may need optimization. False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun the PCR products using either: lower injection voltage / injection time settings, or a reduced amount of sample by diluting PCR products.

Limitations of the procedure:

- In most populations, the major cause of genetic defects in the *ATM* and *TP53* genes are small (point) mutations, most of which will not be detected by using SALSA MLPA Probemix P037 CLL-1.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNPs, point mutations, small indels) in the target sequence detected by a probe can cause false positive results. Mutations/SNPs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.
- MLPA analysis on tumour samples provides information on the *average* situation in the cells from which the DNA sample was purified. Gains or losses of genomic regions or genes may not be detected if the percentage of tumour cells is low. In addition, subclonality of the aberration affects the final ratio of the corresponding probe. Furthermore, there is always a possibility that one or more reference probes *do* show a copy number alteration in a patient sample, especially in solid tumours with more chaotic karyotypes.

Confirmation of results: Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

COSMIC mutation database: https://cancer.sanger.ac.uk/cosmic; and **LOVD mutation database**: https://databases.lovd.nl/. We strongly encourage users to deposit positive results in the above mentioned databases. Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report false positive results due to SNPs and unusual results (e.g., a duplication of *TP53* exons 1 and 4b but not exon 3) to MRC-Holland: info@mlpa.com.

Length				Chro	omosom	al pos	ition (ł	1g18)		
(nt)	SALSA MLPA probe	reference	2p	6q	8p/q	9p	11q	12p/q	13q	17p
64-105	Control fragments – see table in pro	bemix con	tent sect	tion for I	more infor	mation				
130	Reference probe 00797-L19287	5q31								
136	Reference probe 13224-L14557	1p21								
142	EIF3H probe 13351-L22157				8q24.11					
148	KCNRG probe 04018-L04000								13q14.3	
154	Reference probe 11424-L22558	1q41								
160	MYC probe 00580-L22108				8q24.21					
167	MIR15A probe 04019-L22561								13q14.3	
173	ATM probe 02644-L02111					1	l 1q22.3			
178 «	MYCN probe 03028-L21406		2p24.3							
184 ∫	Reference probe 01217-L18058	4q35								
190 Δ ¬	FNDC3A probe 17896-L22175								13q14.2	
195	DLEU2 probe 04020-L21407								13q14.3	
200	Reference probe 04827-L22160	5p13								
205 «	MYCN probe 17473-L21265		2p24.3							
211	TNFAIP3 probe 17472-L22159			6q23.3						
217	IFNG probe 00472-L21249							12q15		
223	REL probe 17474-L21266		2p16.1							
229	CDKN2B probe 16059-L18233			6 95 9		9p21.3				
235	IGF2R probe 02/98-L22562			6q25.3						
241 #	INFRSF10B probe 1/4/5-L21/81		2 24 2		8 p 21.3					
24/ «	MYCN probe 1/4/6-L2255/		2p24.3							
256	CDKN2A probe 156/4-L1/640					9p21.3				17 10 1
263 ∓	1P53 probe 023/6-L21409	2 12								17p13.1
267	Reference probe 12/82-L15494	2q13						12 14 1		
2/4 «	CDK4 probe 17/35-L22100				0-24.21			12q14.1		
201	MTC probe 1/4/7-L22505				8q24.21					17-121
285 +	DEL probe 17479 21270		2016 1							17013.1
292	TDE2 probe 17478-L21270		2010.1							17n121
299	ATD78 probe 02242 122875								1201/12	17012.1
310	TNEPSE10A probe 17470-1 22161				8n213				15414.5	
321	I RMP probe 00495-1 22559				0 P 21.5			12 n 12.1		
328	Reference probe 08115-122104	11n15						12012.1		
320	ATM probe 02663-1 22101	11013					1022.3			
344	Reference probe 16871-L 19664	9a34				-	1922.5			
352	PARK2 probe 02182-121780	- 995		6a26						
358	CCND2 probe 00498-121253			0420				12 p 13.32		
365 «	MYCN probe 02572-L21412		2p24.3							
373	DLEU7 probe 17480-L21272								13a14.3	
382	RB1 probe 01794-L01357								13q14.2	
391	Reference probe 07808-L22560	3p22								
400 «	CHFR probe 02684-L21413							12a24.33		
409	TP53 probe 02263-L01749									17p13.1
418	ALK probe 08323-L08192		2p23.2							I
427	Reference probe 06435-L05961	6p22								
436	AIM1 probe 17481-L22106			6q21						
445	SEC63 probe 17736-L21863			6q21						
451	Reference probe 05026-L22184	2q32		•						
457	LATS1 probe 17483-L22569			6q25.1						
466	DLEU7 probe 03042-L21414								13q14.3	
472	Reference probe 11803-L12598	15q15								
481	ALK probe 15397-L08194		2p23.2							
495	TNFAIP3 probe 17484-L21276			6q23.3						
500	Reference probe 15203-L20113	3p12								

Table 1. SALSA MLPA Probemix P037-B1 CLL-1

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 \neg Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

 Δ More variable. This probe may be sensitive to certain experimental variations. Aberrant results should be treated with caution.

 ${\mbox{\sc f}}$ Frequent copy number alterations detected with this probe. Aberrant results should be treated with caution.

This probe's specificity relies on a single nucleotide difference compared to a related gene or pseudogene. As a result, an apparent duplication of only this probe can be the result of a non-significant single nucleotide sequence change in the related gene or pseudogene.

[‡] Ligation site of this probe is located on a common mutational hotspot both in germline and somatic samples as reported by IARC TP53 Database (http://p53.iarc.fr/). In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

Table 2. P037-B1 probes arranged according to chromosomal location

Table 2a. Target probes arranged according to chromosomal location.

Length	SALSA MLI	PA	Gene, exon ^a	Lo	cation	1/	<u>P</u> (24 nt	Partia	al s	seq	uence ^b ligation	sita)	Loc	ation	n D)ista	nce	e to
2p gain	probe			LIGC			<u>(2 + 110</u>				ingation	<u>sicc)</u>	(iig r	<u>o) </u>		ICAL		

Gain of the short arm of chromosome 2 is a recurring chromosomal aberration in CLL. *MYCN*, *ALK* and *REL* oncogenes, located on 2p, are frequently gained in CLL (Jarosova et al. 2010). 2p gain is suggested to be a marker of disease progression and poor prognosis (Fabris et al. 2012, Chapiro et al., 2010).

Ligation sites for *MYCN* (2p24.3), *ALK* (2p32.2) and *REL* (2p16.1) probes are indicated according to NM_005378.6, NM_004304.5 and NM_002908.4, and the exon numbering is according to NG_007457.1, LRG_488, NM_002908.4, respectively.

_						
247 «	17476-L22557	MYCN, exon 2	347-348	ATGCCGGGCATG-ATCTGCAAGAAC	02-016.000	0.1 kb
178 «	03028-L21406	MYCN, exon 2	470-471	TGGAAGAAGTTT-GAGCTGCTGCCC	02-016.000	3.4 kb
365 «	02572-L21412	MYCN, exon 3	1200-1201	CTGTCACCACAT-TCACCATCACTG	02-016.003	0.3 kb
205 «	17473-L21265	MYCN, exon 3	1452-1453	CGGAGGACAGTG-AGCGTCGCAGAA	02-016.003	13.3 M b
481	15397-L08194	ALK , exon 27	4906-4907	TTTCTCTTGGAT-ATATGCCATACC	02-029.274	334.5 kb
418	08323-L08192	ALK, exon 4	1909-1910	ACACCTCAGCTG-ACTCCAAGCACA	02-029.608	31.4 M b
223	17474-L21266	REL, exon 7	1034-1035	TATCACAGAACC-CGTAACAGTAAA	02-060.999	3.4 kb
292	17478-L21270	REL , exon 11	1506-1507	TCAAGCTGGTCA-TCAGTGGCCCAC	02-061.003	-

6q deletion

6q deletion is associated with intermediate prognosis in CLL patients (Wang et al. 2011). 6q deletion shows atypical morphology (Cuneo et al. 2004), higher white blood cell counts and more extensive lymphadenopathy (Stilgenbauer et al. 1999). Tumour suppressor genes such as *TNFAIP3*, *LATS1*, *AIM1* (Philipp et al. 2011, Lehmann et al. 2008) have been shown to be deleted in the del6q cases.

Ligation sites for *TNFAIP3* (6q23.3) probes are indicated according to NM_006290.4 and the exon numbering is according to NG_032761.1.

436	17481-L22106	AIM1	6q21	CTATGACCACGG-CTTTCAGTACTT	06-107.076	1.2 M b
445	17736-L21863	SEC63	6q21	CAGCAGGGTGAA-ACTAACAAGAAC	06-108.321	29.9 M b
495	17484-L21276	TNFAIP3, exon 2	412-413	GTTCAGAACTTG-CCAGTTTTGTCC	06-138.234	9.7 kb
211	17472-L22159	TNFAIP3, exon 9	2432-2433	ATCCTGGCCTGC-CGCAGCGAGGAG	06-138.244	11.8 M b
457	17483-L22569	LATS1	6q25.1	CAAAACCCATCT-GTTCCTCCATAC	06-150.046	10.3 M b
235	02798-L22562	IGF2R	6q25.3	TTCAACACAACA-GTGAGCTGTGAC	06-160.350	1.4 M b
352	02182-L21780	PARK2	6q26	TCTGCCGGGAAT-GTAAAGAAGCGT	06-161.728	-

8p loss and 8q amplification

Loss of 8p (including *TNFRSF10A/B* genes) and amplification at 8q24 (including *MYC* oncogene) (Brown et al. 2012) are detected in CLL (Rinaldi et al. 2011, Ouillette et al. 2011) with higher frequency in a subset of CLL with 17p deletion. 8p loss was associated with shorter overall survival and time to treatment in 17p deletion subset (Forconi et al. 2008). Gains at 8q and deletions at 8p associate with resistance to alkylating agents and poor prognosis (Rinaldi et al. 2011).

Ligation sites for MYC (8q24.21) probes are indicated according to NM_002467.5 and the exon numbering is according to NG_007161.2.

241 #	17475-L21781	TNFRSF10B	8 p 21.3	GGTGATTGTACA-CCCTGGAGTGAC	08-022.942	196.4 kb
312	17479-L22161	TNFRSF10A	8 p 21.3	GAATCCCGGGAG-CGCAGCGAGTGG	08-023.138	94.7 M b
142	13351-L22157	EIF3H	8q24.11	TAGATGGCCTTG-TGAGTGCTGTTC	08-117.837	11.0 M b
160	00580-L22108	MYC, exon 3	2317-2318	GAACGAGCTAAA-ACGGAGCTTTTT	08-128.822	0.1 kb
281	17477-L22565	MYC, exon 3	2466-2467	AGGACTTGTTGC-GGAAACGACGAG	08-128.822	-

Product Description version B1-01; Issued 29 November 2019

	-				-	
Length	SALSA MLPA	Gene exena	Location/	Partial sequence ^b	Location	Distance to
(nt)	probe	Gene, exon	Ligation site	(24 nt adjacent to ligation site)	(hg18) in kb	next probe
9p21 los	55					
ĊDKN2A	and CDKN2B locat	ed at 9p21.3 are cel	I cycle regulators i	nvolved in development of many	tumour types	. Loss of 9p21
(encomp	bassing CDKN2A/B)	is relatively infreque	ent in CLL patients	(Ouillette et al. 2011; Fabris et a	al. 2011, Buij	s et al. 2006).
30% of t	the cases of Richter	's transformation car	n exhibit deletions a	at 9p21 (Fabbri et al. 2013, Chigrir	nova et al. 20	13).
256	15674-L17640	CDKN2A	9p21.3	TCCTTTCCGTCA-TGCCGGCCCCCA	09-021.961	34.6 kb
229	16059-L18233	CDKN2B	9p21.3	GCCTGTCTGAGA-CTCACAGGAAGG	09-021.996	-
11q del	etion					
11q dele	tion, which results	in loss of the ATM g	ene at 11q22.3, is	found in 15-20% of CLL cases. De	eletion of 11q	22-q23 as well
as ATM	mutations are asso	ciated with aggressi	ve disease and she	ort median survival (Döhner et al	. 1997, Neilso	on et al. 1997,
Guarini e	et al. 2012).	a are indicated accor	ding to NM 0000E	1.2 and the over numbering is as	ording to LD(2 125
172						3_133. 16.5.kb
1/5	02044-L02111	ATM, EXOIT 14	200-2007		11-107.032	10.5 KD
337	02663-L22102	ATM , exon 22	5042-5041 reverse	CAGCCAACATGC-GAACTTGGTGAT	11-107.649	-
			TEVEISE			
Trisom	/ 12					
Trisomy	12 is the third mos	st common cytogenet	ic abnormality in (CLL detected in 10-20% of patient	s: it confers i	ntermediate or
favourab	le treatment respo	nse and overall surv	ival (Hallek et al.	2010). Atypical lymphocyte morp	hology is obs	erved in some
trisomy	12 cases (Matutes e	et al. 1996).		/ - / F / F		
358	00498-L21253	CCND2	12 p 13.32	ATGCCAGTTGGG-CCGAAAGAGAGA	12-004.279	20.9 M b
321	00495-L22559	LRMP	12 p 12.1	GTCTCTAGAACA-TATCTTGTGGCC	12-025.152	31.3 M b
274 «	17735-L22100	CDK4	12q14.1	TCTCTGAGGCTA-TGGAGGGTCCTC	12-056.428	10.4 M b
217	00472-L21249	IFNG	12q15	GATGGCTGAACT-GTCGCCAGCAGC	12-066.835	65.1 M b
400 «	02684-L21413	CHFR	12q24.33	GACATGCCCTTT-ACAGACTGGGGA	12-131.959	-
13q14 c	deletion					
Interstiti	al deletion at 13q1	4 is the most comm	on (~50%) chrom	osomal aberration in CLL. The DL	EU miR15A 1	6-1 cluster, as
well as t	he <i>RB1</i> gene, are in	mportant tumour sup	pressor candidates	within 13q14 deletion region (Kle	ein et al. 2010), Palamarchuk
et al. 20	10). Deletion of 130	14 represents a CLL	group with the be	st prognosis, and when it is the so	le abnormalit	y also with the
2011) T	berefore probes in	two flanking regions	E is shown to indic	27B are included to define the dele	te et al. 2011	L, Parker et al.
2011). T	neierore, probes in	$\frac{1}{1}$	M 100000 3		euon size.	
382	01704-101357	DP 15 according to N	13014.2		13-047 036	667.7 kb
190 A -	17896-122175	FNDC3A	13014.2		13-048 603	889 3 kh
148	04018-104000	KCNRG	13014 3	GCTTAAGCCATA-ATGCCTGCTGCT	13-049 493	28.5 kb
167	04019-122561	MIR15A	13014 3		13-049 521	33.0 kb
195	04020-121407	DI FU2	13014 3	CGCATGCGTAAA-AATGTCGGGAAA	13-049 554	630.8 kb
466	03042-121414	DIFU7 exon 1	13014 3		13-050 185	130 3 kb
373	17480-121272	DLEU7, exon 2	13014.3		13-050.315	1.1 M b
306 ¬	03242-L22875	ATP7B	13a14.3		13-051.434	
17p del	etion					
17p dele	tions are detected	in 5-10% of newly	diagnosed CLL res	ulting in a loss of TP53 tumour s	uppressor gei	ne at 17p13.1.
Del(17p)	and also TP53 m	utations are associat	ted with a more a	aggressive clinical course, worse	prognosis and	d short overall
survival,	and belong to ult	tra-high risk CLL (M	ougalian and O'Br	ien 2011). TP53 deletion/mutation	ons predict n	o response to
treatmer	nt with purine anal	ogues and are thus	important for ther	apy selection (Stilgenbauer and Z	2010, So	cheteling et al.
2008, Dr	eger et al. 2010).					
Ligation	sites for TP53 (17	p13.1) probes are i	ndicated according	to NM_000546.5 and the exon	numbering i	s according to
LRG_321		-	1041 1040		17 007 515	
285 ‡	02384-L21411	TP53, exon 7	1041-1042	CTGTCCTGGGAG-AGACCGGCGCAC	17-007.518	1.4 kb
263 ‡	U23/6-L21409	TP53, exon 4b	606-60/	CAAGATGTTTTG-CCAACTGGCCAA	17-007.519	0.8 KD
299	1/420-L21142	1 P53 , exon 3	511-510 reverse		17-007.520	11.6 KD
409	02263-L01749	TP53 , exon 1	6/ nt before	CTTCCTCCGGCA-GGCGGATTACTT	17-007.532	
1	1	-	exon 1	1	1	

a) The exon numbering and NG/NM_ sequence used have been retrieved on 10/2019. As changes to the NCBI database can occur after release of this product description, exon numbering may not be up-to-date.
b) Only partial probe sequences are shown. Complete probe sequences are available at www.mlpa.com. Please notify us of any mistakes: info@mlpa.com.

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 Δ More variable. This probe may be sensitive to certain experimental variations. Aberrant results should be treated with caution.

 \neg Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

[‡] Ligation site of this probe is located on a common mutational hotspot both in germline and somatic samples as reported by IARC TP53 Database (http://p53.iarc.fr/). In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

Table 2b. Reference probes arranged according to chromosomal location.

Length	SALSA MLPA	Gene	Location	Location
(nt)	probe	Uche	(hg18)	(hg18) in kb
136	13224-L14557	COL11A1	1p21	01-103.234
154	11424-L22558	USH2A	1q41	01-213.981
267	12782-L15494	EDAR	2q13	02-108.913
451	05026-L22184	COL3A1	2q32	02-189.573
500	15203-L20113	GBE1	3p12	03-081.775
391	07808-L22560	SCN5A	3p22	03-038.625
184 ∫	01217-L18058	KLKB1	4q35	04-187.390
200	04827-L22160	NIPBL	5p13	05-036.997
130	00797-L19287	IL4	5q31	05-132.038
427	06435-L05961	KIAA0319	6p22	06-024.653
344	16871-L19664	COL5A1	9q34	09-136.799
328	08115-L22104	ABCC8	11p15	11-017.406
472	11803-L12598	SPG11	15a15	15-042.647

∫ Frequent copy number alterations detected with this probe. Aberrant results should be treated with caution.

Probe sequences are available at www.mlpa.com.

Related SALSA MLPA probemixes

- **P038 CLL-2**: contains probes for 11q, 12p/q, 13q14, *TP53* & *PTEN* genes and probes specific for *NOTCH1* p.P2514*fs, *SF3B1* p.K700E and *MYD88* p.L265P point mutations.
- **P040 CLL**: contains probes for selected target genes and regions from P037 and P038.
- P041/P042 ATM: contain probes for all ATM exons on 11q.
- **P056 TP53**: contains probes for all *TP53* exons.
- P047 RB1 & P098 Wilson disease: contain more probes for 13q14.3.
- **P252 Neuroblastoma**: contains more probes for the 2p region.
- **P323 CDK4-HMGA2-MDM2**: contains more probes for chromosome 12.

References

- Atanesyan L et al. (2017). Optimal Fixation Conditions and DNA Extraction Methods for MLPA Analysis on FFPE Tissue-Derived DNA. *Am J Clin Pathol.* 147:60-8.
- Brown JR et al. (2012). Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia. *Clin Cancer Res.* 18:3791-802.
- Buijs A et al. (2006). Detection of risk-identifying chromosomal abnormalities and genomic profiling by multiplex ligation-dependent probe amplification in chronic lymphocytic leukemia. *Haematologica*. 91:1434-5.
- Chapiro E et al. (2010). Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. *Leuk Res.* 34:63-8.
- Chigrinova E et al. (2013). Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. *Blood.* 122:2673-82.
- Cuneo A et al. (2004). Chronic lymphocytic leukemia with 6q- shows distinct hematological features and intermediate prognosis. *Leukemia*. 18:476-83.
- Dohner H et al. (1997). 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. *Blood.* 89:2516-22.

- Dreger P et al. (2010). Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. *Blood.* 116:2438-47.
- Fabbri G et al. (2013). Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. *J Exp Med.* 210:2273-88.
- Fabris S et al. (2011). Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in chronic lymphocytic leukemia: a comparative study. *Genes Chromosomes Cancer*. 50:726-34.
- Fabris S et al. (2013). Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia. *Am J Hematol.* 88:24-31.
- Forconi F et al. (2008). Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. *Br J Haematol.* 143:532-6.
- Guarini A et al. (2012). ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. *Haematologica*. 97:47-55.
- Hallek M et al. (2010). Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. *Lancet.* 376:1164-74.
- Hömig-Hölzel C and Savola S (2012). Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. *Diagn Mol Pathol*. 21:189-206.
- Jarosova M et al. (2010). Gain of chromosome 2p in chronic lymphocytic leukemia: significant heterogeneity and a new recurrent dicentric rearrangement. *Leuk Lymphoma.* 51:304-13.
- Klein U et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. *Cancer Cell.* 17:28-40.
- Lehmann S et al. (2008). Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. *Cancer.* 112:1296-305.
- Matutes E et al. (1996). Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. *Br J Haematol.* 92:382-8.
- Mougalian SS and O'Brien S (2011). Adverse prognostic features in chronic lymphocytic leukemia. Oncology (Williston Park). 25:692-6, 9.
- Neilson JR et al. (1997). Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. *Leukemia*. 11:1929-32.
- Ouillette P et al. (2011). Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. *Blood.* 118:3051-61.
- Palamarchuk A et al. (2010). 13q14 deletions in CLL involve cooperating tumor suppressors. *Blood.* 115:3916-22.
- Parker H et al. (2011). 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. *Leukemia*. 25:489-97.
- Parker H et al. (2011). 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. *Leukemia*. 25:489-97.
- Philipp C et al. (2011). Mutation analysis of the TNFAIP3 (A20) tumor suppressor gene in CLL. *Int J Cancer*. 128:1747-50.
- Rinaldi A et al. (2011). Genome-wide DNA profiling better defines the prognosis of chronic lymphocytic leukaemia. *Br J Haematol.* 154:590-9.
- Schetelig J et al. (2008). Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion: a retrospective European Group for Blood and Marrow Transplantation analysis. *J Clin Oncol.* 26:5094-100.
- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Human mutation.* 28:205.
- Stilgenbauer S and Zenz T. (1999). Incidence and clinical significance of 6q deletions in B cell chronic lymphocytic leukemia. *Leukemia*. 13:1331-4.
- Stilgenbauer S et al. (2010). Understanding and managing ultra high-risk chronic lymphocytic leukemia. *Hematology Am Soc Hematol Educ Program.* 2010:481-8.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.
- Wang DM et al. (2011). Intermediate prognosis of 6q deletion in chronic lymphocytic leukemia. *Leuk Lymphoma.* 52:230-7.

Selected publications using SALSA MLPA Probemix P037 CLL-1

- Al Zaabi EA et al. (2010). Multiplex ligation-dependent probe amplification versus multiprobe fluorescence in situ hybridization to detect genomic aberrations in chronic lymphocytic leukemia: a tertiary center experience. *J Mol Diagn.* 12:197-203.
- Bakrania P et al. (2007). SOX2 anophthalmia syndrome: 12 new cases demonstrating broader phenotype and high frequency of large gene deletions. *Br J Ophthalmol*. 91:1471-6.
- Coll-Mulet L et al. (2008). Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. *Br J Haematol.* 142:793-801.
- Fabris S et al. (2011). Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in chronic lymphocytic leukemia: a comparative study. *Genes Chromosomes Cancer.* 50:726-34.
- Groenen PJTA et al. (2011). High prevalence of adverse prognostic genetic aberrations and unmutated IGHV genes in small lymphocytic lymphoma as compared to chronic lymphocytic leukemia. *Journal of Hematopathology*. 4:189-97.
- Rendeiro AF et al. (2016). Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtypespecific epigenome signatures and transcription regulatory networks. *Nat Commun.* 7:11938.
- Stevens-Kroef M et al. (2009). Identification of chromosomal abnormalities relevant to prognosis in chronic lymphocytic leukemia using multiplex ligation-dependent probe amplification. *Cancer Genet Cytogenet*. 195:97-104.
- Stevens-Kroef MJ et al. (2014). Identification of prognostic relevant chromosomal abnormalities in chronic lymphocytic leukemia using microarray-based genomic profiling. *Mol Cytogenet*. 7:3.
- Torabi K et al. (2019). Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers. *Int J Cancer.* 144:513-24.
- Vèronèse L et al. (2013). Contribution of MLPA to routine diagnostic testing of recurrent genomic aberrations in chronic lymphocytic leukemia. *Cancer Genet.* 206:19-25.

P037 Pro	P037 Product history					
Version	Modification					
B1	13 target probes have been replaced and 12 new ones added. Moreover, 10 reference probes have been replaced and 2 new ones included. In addition, the 88 and 96 nt control fragments have been replaced (QDX2).					
A2	Extra control fragments at 88-96-100-105 nt have been added.					
A1	First release.					

Implemented changes in the product description

Version B1-01 — 29 November 2019 (02P)

- Product description rewritten and adapted to a new template.
- Product description separated from P038 probemix description.
- Various minor textual or layout changes.
- Ligation sites of the probes targeting the *MYCN, ALK, REL, TNFAIP3 and MYC* genes updated according to new version of the NM_ reference sequence.
- Warning added to Table 1 for probe specificity relying on a single nucleotide difference between target gene and related gene or pseudogene.
- For uniformity, the chromosomal locations and bands in this document are now all based on hg18 (NCBI36).

Version 23 – 03 January 2018 (T08)

- Changed the name for NOTCH1 c.7544-7545delCT probe to c.7541-7542delCT in table 3b to more accurately reflect the location of the ligation site.
- Various minor textual changes.

Product Description version B1-01; Issued 29 November 2019

More information: www.mlpa.com; www.mlpa.eu	
····	MRC-Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands
E-mail	info@mlpa.com (information & technical questions); order@mlpa.com (orders)
Phone	+31 888 657 200