

## Product Description SALSA<sup>®</sup> MLPA<sup>®</sup> Probemix P116-B2 SGC

To be used with the MLPA General Protocol.

**Version B2.** As compared to version B1, one reference probe has been replaced and several probe lengths have been adjusted. For complete product history see page 8.

#### Catalogue numbers:

- P116-025R: SALSA MLPA Probemix P116 SGC, 25 reactions.
- P116-050R: SALSA MLPA Probemix P116 SGC, 50 reactions.
- **P116-100R:** SALSA MLPA Probemix P116 SGC, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit, available for various number of reactions. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman capillary sequencers, respectively (see www.mlpa.com).

**Certificate of Analysis:** Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at <u>www.mlpa.com</u>.

**Precautions and warnings:** For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mlpa.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

**General Information:** The SALSA MLPA Probemix P116 SGC is a **research use only (RUO)** assay for the detection of deletions or duplications in the *SGCA, SGCB, SGCD, SGCG* and *FKRP* genes, which are associated with Limb-Girdle Muscular Dystrophy. This Probemix can also be used to detect the presence of the *FKRP* L276I point mutation.

Limb-Girdle Muscular Dystrophy (LGMD) is characterised by loss of muscle bulk and strength in patients. The distal muscles are affected late in LGMD, if affected at all. LGMD is typically an inherited disorder, though it may be inherited as a dominant, recessive or X-linked genetic defect. The muscle cells of patients with LGMD cannot properly form the proteins needed for normal muscle function. Defects of different proteins are involved in LGMD, each related to a specific type of muscular dystrophy.

Autosomal recessive LGMD is a genetically heterogeneous disorder. Of the many genes that can result in this disorder, the following genes are present in the P116 SGC probemix:

| Gene | Number of exons | Number of probes | Length   | Location | LGMD type |
|------|-----------------|------------------|----------|----------|-----------|
| SGCA | 10 exons        | 117              | 9.9 kb   | 17q21    | LGMD2D    |
| SGCB | 6 exons         | 6                | 17.6 kb  | 4q12     | LGMD2E    |
| SGCD | 9 exons         | 9                | 441.0 kb | 5q33     | LGMD2F    |
| SGCG | 8 exons         | 8                | 144.2 kb | 13q12    | LGMD2C    |
| FKRP | 4 exons         | 5 <sup>§</sup>   | 12.5 kb  | 19q13    | LGMD2I    |

 $\neg$  This includes a flanking probe located downstream of the *SGCA* gene.

§ This includes a probe specific for the *FKRP* L276I mutation. This probe will only generate a signal when the mutation is present.

More information is available at https://www.ncbi.nlm.nih.gov/books/NBK1408/

# This SALSA MLPA Probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.



#### Gene structure and Transcript variants:

Entrez Gene shows transcript variants of each gene: <u>http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene</u> For NM\_ mRNA reference sequences: <u>http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide</u> Locus Reference Genomic (LRG) database: <u>http://www.lrg-sequence.org/</u>

**Probemix content:** The SALSA MLPA Probemix P116-B2 SGC contains 48 MLPA probes with amplification products between 130 and 492 nt. This includes one probe specific for the *FKRP* L276I mutation which will only generate a signal when the mutations is present. In addition, nine reference probes are included and detect nine different autosomal chromosomal locations. Complete probe sequences and the identity of the genes detected by the reference probes is available online (www.mlpa.com).

This Probemix contains nine quality control fragments generating amplification products between 64 and 121 nt: four DNA Quantity Fragments (Q-fragments), two DNA Denaturation Fragments (D-fragments), one benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mlpa.com.

| Length (nt) | Name                                                                            |
|-------------|---------------------------------------------------------------------------------|
| 64-70-76-82 | Q-fragments (Only visible with <100 ng sample DNA)                              |
| 88-96       | D-fragments (Low signal of 88 or 96 fragment indicates incomplete denaturation) |
| 92          | Benchmark fragment                                                              |
| 100         | X-fragment (X chromosome specific)                                              |
| 105         | Y-fragment (Y chromosome specific)                                              |

No DNA controls results in only five major peaks shorter than 121 nucleotides (nt): four Q-fragments at 64, 70, 76 and 82 nt, and one 19 nt peak corresponding to the unused portion of the fluorescent PCR primer. Non-specific peaks longer than 121 nt AND with a height >25% of the median of the four Q-fragments should not be observed. Note: peaks below this 25% threshold are not expected to affect MLPA reactions when sufficient amount of sample DNA (50-200 ng) is used.

**MLPA technique:** The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mlpa.com).

**Required specimens:** Extracted DNA, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

**Reference samples:** All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from unrelated individuals who are from families without a history of LGMD. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol.

**Positive control DNA samples:** MRC-Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Biobank (https://catalog.coriell.org) and DSMZ (https://www.dsmz.de/home.html) have a diverse collection of biological resources which may be used as a positive control DNA sample in your MLPA experiments. The quality of cell lines can change, therefore samples should be validated before use.

**SALSA Binning DNA SD030:** The SD030 Binning DNA provided with this Probemix can be used as Binning DNA sample for binning of the *FKRP* L276I mutation-specific probe (FKPR probe 11373-L13479). SD030 Binning DNA is a mixture of genomic DNA from healthy individuals and plasmid DNA that contains the target sequence detected by the above mentioned probe. Inclusion of one reaction with 5  $\mu$ l SD030 Binning DNA in initial MLPA experiments is essential as it can be used to aid in data binning of the peak pattern using Coffalyser.Net software. Furthermore, Binning DNA should be included in the experiment whenever changes have been applied to the set-up of the capillary electrophoresis device (e.g. when capillaries have been renewed). Binning DNA should never be used as a reference sample in the MLPA data analysis, neither should it be used in quantification of mutation signal, as for this purpose true mutation positive patient



samples or cell lines should be used. It is strongly advised to use DNA sample and reference DNA samples extracted with the same method and derived from the same source of tissue. For further details, please consult the SD030 Binning DNA product description provided. **This product is for research use only (RUO).** 

**Data analysis:** Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mlpa.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

**Interpretation of results:** The standard deviation of all probes in the reference samples should be <0.10 and the dosage quotient (DQ) of the reference probes in the patient samples should be between 0.80 and 1.20. When these criteria are fulfilled, the following cut-off values for the DQ of the probes can be used to interpret MLPA results for autosomal or pseudo-autosomal chromosomes:

| Copy Number status                                | Dosage quotient  |
|---------------------------------------------------|------------------|
| Normal                                            | 0.80 < DQ < 1.20 |
| Homozygous deletion                               | DQ = 0           |
| Heterozygous deletion                             | 0.40 < DQ < 0.65 |
| Heterozygous duplication                          | 1.30 < DQ < 1.65 |
| Heterozygous triplication/ Homozygous duplication | 1.75 < DQ < 2.15 |
| Ambiguous copy number                             | All other values |

- Arranging probes according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases. Analysis of parental samples may be necessary for correct interpretation of complex results.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Incomplete DNA denaturation (e.g. due to salt contamination) can lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- Normal copy number variation in healthy individuals is described in the database of genomic variants: <u>http://dgv.tcag.ca/dgv/app/home</u>. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- Not all abnormalities detected by MLPA are pathogenic. In some genes, intragenic deletions are known that result in very mild or no disease (Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- Copy number changes detected by reference probes are unlikely to have any relation to the condition tested for.

#### Limitations of the procedure:

- In most populations, the major cause of genetic defects in the LGMD-related genes are small (point) mutations, most of which will not be detected by using SALSA<sup>®</sup> MLPA<sup>®</sup> Probemix P116 SGC.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNPs, point mutations, small indels) in the target sequence detected by a probe can cause false positive results. Mutations/SNPs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.



**Confirmation of results:** Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

Please report copy number changes detected by the reference probes, false positive results due to SNPs and unusual results (e.g., a duplication of *SGCA* exons 6 and 8 but not exon 7) to MRC-Holland: info@mlpa.com.

| Length              |                                                                  |              | Chrom         | osomal p     | osition (h | a18)   |          |
|---------------------|------------------------------------------------------------------|--------------|---------------|--------------|------------|--------|----------|
| (nt)                | SALSA MLPA probe                                                 | reference    | SGCA          | SGCB         | SGCD       | SGCG   | FKRP     |
| 64-105              | Control fragments – see table in                                 | probemix cor | ntent section | for more inf | formation  |        |          |
| 130                 | Reference probe 00797-L13645                                     | 5q31         |               |              |            |        |          |
| 136                 | SGCA probe 11367-L12092                                          | 1-           | Exon 8        |              |            |        |          |
| 142                 | SGCG probe 03387-L02780                                          |              |               |              |            | Exon 1 |          |
| 148                 | SGCA probe 03372-L02765                                          |              | Exon 2        |              |            |        |          |
| 154                 | Reference probe 15163-L16938                                     | 3q27         | -             |              |            |        |          |
| 160                 | SGCB probe 04611-L02767                                          |              |               | Exon 3       |            |        |          |
| 172                 | SGCA probe 03373-L13241                                          |              | Exon 9        |              |            |        |          |
| 178                 | SGCG probe 03388-L20658                                          |              |               |              |            | Exon 2 |          |
| 184                 | SGCB probe 03375-L20659                                          |              |               | Exon 5       |            |        |          |
| 190                 | SGCB probe 11368-L12093                                          |              |               | Exon 6       |            |        |          |
| 196 «               | SGCB probe 17268-L20690                                          |              |               | Exon 1       |            |        |          |
| 202                 | SGCD probe 03376-L12512                                          |              |               |              | Exon 1     |        |          |
| 208                 | SGCD probe 11369-L12094                                          |              |               |              | Exon 2     |        |          |
| 214                 | Reference probe 08940-L09035                                     | 11p15        |               |              | -          |        |          |
| 222 «               | <b>FKRP probe</b> 11370-L20320                                   |              |               |              |            |        | Exon 2   |
| 228                 | SGCG probe 03390-L02783                                          |              |               |              |            | Exon 4 |          |
| 232                 | SGCD probe 11371-L13242                                          |              |               |              | Exon 8     |        |          |
| 238                 | SGCD probe 03377-L02770                                          |              |               |              | Exon 3     |        |          |
| 245                 | Reference probe 08677-L08689                                     | 13q32        |               |              |            |        |          |
| 252                 | SGCA probe 11372-L12899                                          |              | Exon 6        |              |            |        |          |
| 259 § «             | <b>FKRP probe</b> 11373-L13479                                   |              |               |              |            |        | L276I mu |
| 265                 | <b>SGCG probe</b> 03391-L12902                                   |              |               |              |            | Exon 5 |          |
| 274                 | SGCD probe 03378-L02771                                          |              |               |              | Exon 4     |        |          |
| 280 ¥               | SGCD probe 21678-L31529                                          |              |               |              | Exon 6     |        |          |
| 285                 | Reference probe 05387-L21105                                     | 12p11        |               |              |            |        |          |
| 292                 | SGCA probe 11374-L12099                                          |              | Exon 1        |              |            |        |          |
| 301 ±               | SGCG probe 03392-L02785                                          |              | -             |              |            | Exon 6 |          |
| 310                 | SGCD probe 03379-L02772                                          |              |               |              | Exon 5     |        |          |
| 320                 | SGCA probe 11375-L12901                                          |              | Exon 4        |              |            |        |          |
| 328                 | Reference probe 09571-L10025                                     | 22q13        |               |              |            |        |          |
| 337                 | <b>SGCG probe</b> 03393-L13243                                   |              |               |              |            | Exon 7 |          |
| 343                 | <b>SGCB probe</b> 11376-L12101                                   |              |               | Exon 2       |            |        |          |
| 355                 | SGCA probe 11377-L12102                                          |              | Exon 5        |              |            |        |          |
| 362 ¬               | <b>COL1A1 probe</b> 07983-L07764                                 | D            | ownstream     |              |            |        |          |
| 373                 | <b>SGCG probe</b> 03394-L02787                                   |              |               | •            |            | Exon 8 |          |
| 381                 | SGCD probe 03380-L04677                                          |              |               |              | Exon 7     |        |          |
| 388                 | <b>SGCD probe</b> 03381-L04694                                   |              |               |              | Exon 9     |        |          |
| 396                 | <b>SGCA probe</b> 11378-L20660                                   |              | Exon 10       |              |            |        |          |
| 403                 | Reference probe 04960-L20661                                     | 1p22         |               |              |            |        |          |
| 409 «               | <b>FKRP probe</b> 11379-L12104                                   |              |               |              |            |        | Exon 3   |
| 418 «               | <b>FKRP probe</b> 11380-L12105                                   |              |               |              |            |        | Exon 4   |
| 427                 | <b>SGCA probe</b> 11381-L12106                                   |              | Exon 7        |              |            |        |          |
| 432 ¥               | <b>SGCB probe</b> 21891-L12107                                   |              |               | Exon 4       |            |        |          |
| 445                 | Reference probe 10370-L09644                                     | 6q27         |               |              |            |        |          |
|                     | <b>SGCA probe</b> 11383-L12108                                   | ~~~,         | Exon 3        |              |            |        |          |
| 454                 |                                                                  |              | -//0/1 0      |              |            |        | Evon 1   |
| 454<br>471 «        | <b>FKRP probe</b> 11384-121239                                   |              |               |              |            |        |          |
| 454<br>471 «<br>481 | <b>FKRP probe</b> 11384-L21239<br><b>SGCG probe</b> 11620-L20322 |              |               |              |            | Exon 3 | Exon 1   |

## Table 1. SALSA MLPA Probemix P116-B2 SGC

\* New in version B2 (from lot B2-1218 onwards).

¥ Changed in version B2 (from lot B2-1218 onwards). Small change in length, no change in sequence detected.

§ Mutation-specific probe. This probe will only generate a signal when the L276I mutation is present. It has been tested on artificial DNA **but not on positive human samples!** 

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

 $\neg$  Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.



 $\pm$  SNP rs114160429 mutation could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

## Table 2. P116 probes arranged according to chromosomal location

Table 2a. SGCA

| Length<br>(nt) | SALSA MLPA<br>probe | SGCA<br>exon | Ligation site<br>NM 000023.2 | <u>Partial</u> sequence (24 nt<br>adjacent to ligation site) | Distance to<br>next probe |
|----------------|---------------------|--------------|------------------------------|--------------------------------------------------------------|---------------------------|
|                |                     | start codon  | 37-39 (exon 1)               | · · · · · · · · · · · · · · · · · · ·                        |                           |
| 292            | 11374-L12099        | Exon 1       | 60-61                        | CTCTTCTGGACT-CCTCTCCTCGTG                                    | 1.4 kb                    |
| 148            | 03372-L02765        | Exon 2       | 155-156                      | TGTGCACACCTT-GGACCATGAGAC                                    | 0.3 kb                    |
| 454            | 11383-L12108        | Exon 3       | 323-324                      | TGCCACCCCAGA-AGATCGTGGGCT                                    | 0.3 kb                    |
| 320            | 11375-L12901        | Exon 4       | 377-378                      | GGACAGCTTTGA-TACCACTCGGCA                                    | 0.5 kb                    |
| 355            | 11377-L12102        | Exon 5       | 492-493                      | CTGCCCTCAACA-CCTGCCAGCCGC                                    | 0.8 kb                    |
| 252            | 11372-L12899        | Exon 6       | 739-740                      | CTTGCTACGACA-CCTTGGCACCCC                                    | 1.1 kb                    |
| 427            | 11381-L12106        | Exon 7       | 902-903                      | CTTCTTGGTGGA-TGCTCTGGTCAC                                    | 0.4 kb                    |
| 136            | 11367-L12092        | Exon 8       | 1011-1012                    | AGAGACCTGGCT-ACCTCCGAGTGA                                    | 4.7 kb                    |
| 172            | 03373-L13241        | Exon 9       | 1129-1130                    | CCATGTTCAATG-TGCACACAGGTG                                    | 0.4 kb                    |
| 396            | 11378-L20660        | Exon 10      | 1239-1238, reverse           | GAGAAGGGAGGA-TGAAGTCAGGGC                                    | 9.3 kb                    |
|                |                     | stop codon   | 1198-1200 (exon 9)           |                                                              |                           |
| 362 ¬          | 07983-L07764        | COL1A1       |                              | AAGACACAGGAA-ACAATGTATTGT                                    |                           |

 $\neg$  Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

**Note:** The exon numbering used in this P116-B2 SGC product description is the exon numbering from the RefSeq transcript NM\_000023.2, which is identical to the LRG\_203 sequence. The exon numbering and NM sequence used is from 12/2018, but can be changed (e.g. by NCBI) after the release of the product description. Please notify us of any mistakes: <u>info@mlpa.com</u>.

#### Table 2b. SGCB

| Length<br>(nt) | SALSA MLPA<br>probe | SGCB<br>exon | Ligation site<br>NM_000232.4     | <u>Partial</u> sequence (24 nt adjacent to ligation site) | Distance to<br>next probe |
|----------------|---------------------|--------------|----------------------------------|-----------------------------------------------------------|---------------------------|
|                |                     | start codon  | 61-63 (exon 1)                   |                                                           |                           |
| 196 «          | 17268-L20690        | Exon 1       | 163 nt before<br>exon 1, reverse | GGCGCGTTGTAT-TGCACAGGGGCC                                 | 5.0 kb                    |
| 343            | 11376-L12101        | Exon 2       | 200-201                          | ATACATTCCGAT-TGATGAAGATCG                                 | 3.8 kb                    |
| 160            | 04611-L02767        | Exon 3       | 396-397                          | CGATTTAAGCAA-GTATCTGACATG                                 | 0.9 kb                    |
| 432 ¥          | 21891-L12107        | Exon 4       | 533-534                          | TGTAGAAAACAA-CAAAACTTCTAT                                 | 0.9 kb                    |
| 184            | 03375-L20659        | Exon 5       | 764-765                          | TGTATTCATTAT-GGGCAAAACCAT                                 | 4.0 kb                    |
| 190            | 11368-L12093        | Exon 6       | 948-949                          | GGGACGCTCTTC-AAGGTGCAAGTA                                 |                           |
|                |                     | stop codon   | 1015-1017 (exon 6)               |                                                           |                           |

Y Changed in version B2 (from lot B2-1218 onwards). Small change in length, no change in sequence detected.
 « Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

**Note:** The exon numbering used in this P116-B2 SGC product description is the exon numbering from the RefSeq transcript NM\_000232.4, which is identical to the LRG\_204 sequence. The exon numbering and NM sequence used is from 12/2018, but can be changed (e.g. by NCBI) after the release of the product description. Please notify us of any mistakes: <u>info@mlpa.com</u>.

#### Table 2c. SGCD

| Length<br>(nt) | SALSA MLPA<br>probe | SGCD<br>exon | Ligation site<br>NM_000337.5 | <u>Partial</u> sequence (24 nt<br>adjacent to ligation site) | Distance to<br>next probe |
|----------------|---------------------|--------------|------------------------------|--------------------------------------------------------------|---------------------------|
|                |                     | start codon  | 520-522 (exon 2)             |                                                              |                           |
| 202            | 03376-L12512        | Exon 1       | 349-350                      | CTGACTGGGGCA-GCTTCTGAGCGC                                    | 2.5 kb                    |
| 208            | 11369-L12094        | Exon 2       | 1 nt after exon 2            | AGGTGGAGATGG-TGAGTAATTCCC                                    | 15.0 kb                   |
| 238            | 03377-L02770        | Exon 3       | 564-565                      | AGCACCATGCCT-GGCTCTGTGGGG                                    | 164.2 kb                  |
| 274            | 03378-L02771        | Exon 4       | 804-805                      | AAAGAAATCCAG-TCCCGACCAGTA                                    | 80.6 kb                   |
| 310            | 03379-L02772        | Exon 5       | 846-847                      | TCTGCCAGAAAT-GTTACAGTGAAC                                    | 5.7 kb                    |



Product Description version B2-01; Issued 10 January 2019

| Length<br>(nt) | SALSA MLPA<br>probe | SGCD<br>exon | Ligation site<br>NM_000337.5 | <u>Partial</u> sequence (24 nt<br>adjacent to ligation site) | Distance to<br>next probe |
|----------------|---------------------|--------------|------------------------------|--------------------------------------------------------------|---------------------------|
| 280 ¥          | 21678-L31529        | Exon 6       | 986-985, reverse             | CTACTACCACTT-CATTATTGTCTG                                    | 52.5 kb                   |
| 381            | 03380-L04677        | Exon 7       | 1053-1054                    | CCTAAATCTATA-GAAACACCTAAT                                    | 110.2 kb                  |
| 232            | 11371-L13242        | Exon 8       | 1166-1167                    | AGAAGCTGGCAA-TATGGAAGCCAC                                    | 1.6 kb                    |
| 388            | 03381-L04694        | Exon 9       | 1302-1303                    | CAGAAGGTCTTC-GAGATCTGCGTC                                    |                           |
|                |                     | stop codon   | 1390-1392 (exon 9)           |                                                              |                           |

<sup>¥</sup> Changed in version B2 (from lot B2-1218 onwards). Small change in length, no change in sequence detected.

**Note:** The exon numbering used in this P116-B2 SGC product description is the exon numbering from the RefSeq transcript NM\_000337.5, which is identical to the LRG\_205 sequence. The exon numbering and NM sequence used is from 12/2018 but can be changed (e.g. by NCBI) after the release of the product description. Please notify us of any mistakes: <u>info@mlpa.com</u>.

#### Table 2d. SGCG

| Length<br>(nt) | SALSA MLPA<br>probe | SGCG<br>exon | Ligation site NM_000231.2 | <u>Partial</u> sequence (24 nt adjacent to ligation site) | Distance to<br>next probe |
|----------------|---------------------|--------------|---------------------------|-----------------------------------------------------------|---------------------------|
|                |                     | start codon  | 156-158 (exon 2)          |                                                           |                           |
| 142            | 03387-L02780        | Exon 1       | 109-110                   | TGGTAGAGCTCG-GGCCAGCTGTAG                                 | 22.8 kb                   |
| 178            | 03388-L20658        | Exon 2       | 273-274                   | TCTACTTGTTTG-TTCTTCTTTAC                                  | 30.9 kb                   |
| 481            | 11620-L20322        | Exon 3       | 404-405                   | TTGGAAGGGGAA-TCAGAATTTTTA                                 | 16.0 kb                   |
| 228            | 03390-L02783        | Exon 4       | 497-498                   | GTGACTGTAAAT-GCGCGCAACTCA                                 | 28.7 kb                   |
| 265            | 03391-L12902        | Exon 5       | 588-589                   | AGATCAACTCCA-ACGACGGCAAGC                                 | 16.0 kb                   |
| 301 ±          | 03392-L02785        | Exon 6       | 689-690                   | TTTGAACATTCA-GTGGAGACACCC                                 | 25.2 kb                   |
| 337            | 03393-L13243        | Exon 7       | 763-764                   | GAGTCTAAGCAT-GGATGCCCCAAG                                 | 3.7 kb                    |
| 373            | 03394-L02787        | Exon 8       | 898-899                   | ACCCAAGCTGGT-GCAGGGGACGTG                                 |                           |
|                |                     | stop codon   | 1029-1031 (exon 8)        |                                                           |                           |

 $\pm$  SNP rs114160429 mutation could influence the probe signal. In case of apparent deletions, it is recommended to sequence the region targeted by this probe.

**Note:** The exon numbering used in this P116-B2 SGC product description is the exon numbering from the RefSeq transcript NM\_000231.2, which is identical to the LRG\_207 sequence. The exon numbering and NM sequence used is from 12/2018 but can be changed (e.g. by NCBI) after the release of the product description. Please notify us of any mistakes: <u>info@mlpa.com</u>.

#### Table 2e. FKRP

| Length<br>(nt) | SALSA MLPA<br>probe | <i>FKRP</i><br>exon | Ligation site<br>NM_024301.4          | <u>Partial</u> sequence (24 nt<br>adjacent to ligation site) | Distance to<br>next probe |
|----------------|---------------------|---------------------|---------------------------------------|--------------------------------------------------------------|---------------------------|
|                |                     | start codon         | 298-300 (exon 4)                      |                                                              |                           |
| 471 «          | 11384-L21239        | Exon 1              | 127 nt after exon 1                   | TCGTGCTGGATA-AAGTGCAGGATC                                    | 1.8 kb                    |
| 222 «          | 11370-L20320        | Exon 2              | 82-83                                 | TGCCCTCCTGGA-ACTCCCCCAGCC                                    | 0.5 kb                    |
| 409 «          | 11379-L12104        | Exon 3              | 139-138, reverse                      | CTGGGTCTGAGT-TGCGATTTGGCC                                    | 7.7 kb                    |
| 259 § «        | 11373-L13479        | Exon 4              | 1123-1122, reverse;<br>L276I mutation | CCAGCTCACTAT-GCGGATGCCCAG                                    | 0.9 kb                    |
| 418 «          | 11380-L12105        | Exon 4              | 1992-1993                             | CCAGATTTATCA-AATGGTCATGCC                                    |                           |
|                |                     | stop codon          | 1783-1785 (exon 4)                    |                                                              |                           |

« Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

§ Mutation-specific probe. This probe will only generate a signal when the L276I mutation is present. It has been tested on artificial DNA **but not on positive human samples**!

**Note:** The exon numbering used in this P116-B2 SGC product description is the exon numbering from the RefSeq transcript NM\_024301.4, which is identical to the LRG\_761 sequence. The exon numbering and NM sequence used is from 12/2018 but can be changed (e.g. by NCBI) after the release of the product description. Please notify us of any mistakes: <u>info@mlpa.com</u>.



## **Related SALSA MLPA probemixes**

- P268 DYSF: Contains probes for *DYSF* involved in LGMD2B.
- P176 CAPN3: Contains probes for CAPN3 involved in LGMD2A.
- P061 Lissencephaly: Contains probes for POMT1 and POMGNT1 involved in LGMD2K and LGMD2O.
- P436 ANO5: Contains probes for *ANO5*, involved in LGMD2L.
- P048 LMNA/MYOT: Contains probes for LMNA, MYOT and CAV3.

## References

- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligationdependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. *Hum Mutat.* 28:205.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.

#### P116 Product history

| Version   | Modification                                                                                                                                         |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| B2        | One reference probe has been replaced and several probe lengths have been adjusted.                                                                  |
| <i>B1</i> | One extra probe each for SGCB, SGCD and FKRP have been included. Five reference probes and the 88 nt and 96 nt control fragments have been replaced. |
| A1        | First release.                                                                                                                                       |

#### Implemented changes in the product description

Version B2-01 10 January 2019 (01P)

- Product description restructured and adapted to a new template.
- Product description adapted to a new product version (version number changed, changes in Table 1 and Table 2, new picture included).

Version 08 – 22 July 2015 (54)

- Product description adapted to a new lot (lot number added, new pictures included).
- Various textual changes.

| More information: www.mlpa.com; www.mlpa.eu |                                                                                |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
|                                             | MRC-Holland bv; Willem Schoutenstraat 1<br>1057 DL, Amsterdam, The Netherlands |  |  |  |
| E-mail                                      | info@mlpa.com (information & technical questions); order@mlpa.com (orders)     |  |  |  |
| Phone                                       | +31 888 657 200                                                                |  |  |  |