SALSA MLPA probemix P106-C1 MRX

Lot C1-0416. As compared to the previous lot B2-0812, one ARX probe has been replaced. The Y-chromosome fragment on 118 nt has been elongated to 121 nt.

Mental retardation (MR) is defined as a significant impairment of cognitive and adaptive functioning, with onset before age 18 years, and it is estimated to occur in about 1-3% of the population (Chelly and Mandel, 2001, *Nat Rev Genet.*). Among mentally retarded patients, an excess of males over females has long been noted, which is usually explained by the presence of many genes responsible for MR on the X chromosome.

X-linked mental retardation (XLMR) is usually divided into syndromic and non-syndromic or non-specific forms. In syndromic forms (MRXS), MR is present in association with a specific pattern of physical, neurological, and/or metabolic abnormalities. The term non-specific or non-syndromic X-linked mental retardation (MRX) was introduced to indicate a condition segregating in an X-linked manner in which male patients have no consistent phenotypic manifestations other than MR. Many different genes responsible for MRX have been identified.

This P106-C1 MRX MLPA probemix can be used to detect copy number changes of several genes on the Xchromosome that have been implicated in (non-specific) X-linked mental retardation. The MLPA P106-C1 MRX probemix includes probes for 16 different MRX genes: RPS6KA3, ARX, IL1RAPL1, TSPAN7, PQBP1, HUWE1, OPHN1, ACSL4, PAK3, DCX, AGTR2, ARHGEF6, FMR1, AFF2 (FMR2), SLC6A8 and GDI1. For most genes, probes are present for only some of the exons.

This SALSA[®] MLPA[®] probemix is designed to detect deletions/duplications of one or more sequences in the aforementioned genes in a DNA sample. In males, deletions of a probe's recognition sequence on the X-chromosome will lead to a complete absence of the corresponding probe amplification product, whereas female heterozygotes are recognisable by a 35-50% reduction in relative peak height. Note that a mutation or polymorphism in the sequence detected by a probe can also cause a reduction in relative peak height, even when not located exactly on the ligation site! In addition, some probe signals are more sensitive to sample purity and small changes in experimental conditions. Therefore, deletions and duplications detected by MLPA should always be confirmed by other methods. Not all deletions and duplications detected by MLPA will be pathogenic; users should always verify the latest scientific literature when interpreting their findings. We have no information on what percentage of defects in these genes is caused by deletions/duplications of complete exons. Finally, note that most defects in this gene are expected to be small (point) mutations which will not be detected by this SALSA[®] MLPA[®] test.

This SALSA MLPA probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

The use of a SALSA[®] MLPA[®] probemix and reagents requires a thermocycler with heated lid and sequence type electrophoresis equipment. Different fluorescent PCR primers are available. The MLPA technique has been first described in Nucleic Acid Research 30, e57 (2002).

More information

Website : www.mlpa.com

- E-mail : <u>info@mlpa.com</u> (information & technical questions); <u>order@mlpa.com</u> (for orders)
- Mail : MRC-Holland bv; Willem Schoutenstraat 1, 1057 DL Amsterdam, the Netherlands

Related SALSA MLPA probemixes

- P245 Microdeletion-1: Probes are included for 21 different microdeletion syndromes; can be used for primary screening of microdeletion syndromes.
- P036 Subtelomeres Mix 1 / P070 Subtelomeres Mix 2B: These probemixes each contain one probe for every subtelomere.
- More probemixes for specific subtelomere analysis are available. See <u>www.mlpa.com</u>.
- P064 MR-1 and P096 MR-2: Contain probes for several mental retardation syndromes.
- Several syndrome-specific probemixes useful for confirmation of findings with this P106 MRX probemix are available; see page 4-7.

References for SALSA MLPA probemix P106 MRX

- Utine, G.E. et al., 2012. Searching for copy number changes in nonsyndromic X-linked intellectual disability. *Mol Syndromol.* 2:64-71.
- Flynn, M. et al., 2011. Whole gene duplication of the PQBP1 gene in syndrome resembling Renpenning. *Am J Med Genet. A.* 155A:141-4.
- Madrigal, I. et al., 2007. MLPA as first screening method for the detection of microduplications and microdeletions in patients with X-linked mental retardation. *Genet Med.* 9:117-22.
- Tejada, M. et al., 2011. A child with mild X-linked intellectual disability and a microduplication at Xp22.12 including RPS6KA3. *Pediatrics*. 128:e1029

Data analysis

The P106-C1 MRX probemix contains 46 MLPA probes with amplification products between 130 and 481 nt. In addition, it contains 10 control fragments generating an amplification product smaller than 122 nt: four DNA Quantity fragments (Q-fragments) at 64-70-76-82 nt, three DNA Denaturation control fragments (D-fragments) at 88-92-96 nt, one X-fragment at 100 nt and two Y-fragments at 105 nt and 121 nt. More information on how to interpret observations on these control fragments can be found in the MLPA protocol.

Data generated by this probemix should be normalised with a more robust method. (1) Intra-sample normalisation should be performed by dividing the <u>signal of each probe</u> by <u>the signal of every other probe in</u> <u>that sample</u>, thus creating as many ratios per probe as there are other probes. Subsequently, the median of all these produced ratios per probe should be taken; this is the probe's Normalisation Constant. (2) Secondly, inter-sample comparison should be performed by dividing the Normalisation Constant of each probe in a given sample by the average Normalisation Constant of that probe in <u>all the reference samples</u>.

Data normalisation should be performed within one experiment. Only samples purified by the same method should be compared. Confirmation of most exons deletions and amplifications can be done by e.g. Southern blotting, long range PCR, qPCR, FISH.

Info/remarks/suggestions for improvement: info@mlpa.com.

Length	SALSA MLPA probe Chromosomal position								
(nt)	-	-							
	Q-fragments: DNA quantity; only visible with								
88-92-96	D-fragments: Low signal of 88 or 96 nt fragment indicates incomplete denaturation X-fragment: Specific for the X chromosome								
100	X-fragment: Specific for the X chromosome Y-fragment: Specific for the Y chromosome								
105									
121 ¥	Y-fragment: Specific for the Y chromosome								
130	AGTR2 probe 13917-L02320	Xq23							
136 ±	GDI1 probe 16875-L19669	Xq28							
142	FMR1 probe 02928-L03720	Xq27							
148 ±	ACSL4 probe 02935-L02326	Xq23							
154 ±	AFF2 probe 03511-L04202	Xq28							
160 ±	TSPAN7 probe 02903-L02297	Xp11							
166	FMR1 probe 02927-L03721	Xq27							
172	ARHGEF6 probe 16857-L19651	Xq26							
178	RPS6KA3 probe 02907-L02301	Xp22							
184	HUWE1 probe 13919-L15456	Xp11							
190 ~ ±	ACSL4 probe 02155-L15826	Xq23							
<u>195 ± *</u>	ARX probe 18790-L24221	Xp21							
202	ARHGEF6 probe 02902-L04460	Xq26							
208 ±	SLC6A8 probe 01871-L15827	Xq28							
215	DCX probe 04123-L15828	Xq23							
222 ±	ARX probe 02898-L04200	Xp21							
229 ±	ARX probe 13669-L15822	Xp21							
235	IL1RAPL1 probe 02922-L23556	Xp21							
241	AFF2 probe 03516-L15823	Xq28							
248 256	ACSL4 probe 03512-L23557	Xq23							
256	HUWE1 probe 13920-L23672	Xp11							
263 ~	AFF2 probe 02933-L23673	Xq28							
208 ~	TSPAN7 probe 02904-L23558 DCX probe 04124-L03481	Xp11 Xq23							
273	AFF2 probe 00493-L00066	Xq23							
285	IL1RAPL1 probe 02920-L02314	Xq28 Xp21							
301 ±	SLC6A8 probe 01876-L01445	Xq28							
310	PQBP1 probe 02918-L02878	Xq20 Xp11							
319	DCX probe 04121-L08390	Xq23							
328	IL1RAPL1 probe 02921-L02315	Xq23 Xp21							
337	AFF2 probe 02932-L02323	Xq28							
346	ARHGEF6 probe 03719-L02293	Xq26							
355	AGTR2 probe 02925-L02319	Xq23							
364	RPS6KA3 probe 02906-L02300	Xp22							
371	OPHN1 probe 02912-L02306	Xq12							
378 ±	GDI1 probe 16874-L23559	Xq28							
385	PAK3 probe 02908-L03178	Xq23							
391	PQBP1 probe 03520-L02313	Xp11							
400	PAK3 probe 03521-L02304	Xq23							
409	OPHN1 probe 02913-L23560	Xq12							
418	PAK3 probe 02909-L02303	Xq23							
427	IL1RAPL1 probe 02923-L23561	Xp21							
436	OPHN1 probe 02914-L02308	Xq12							
443	ARHGEF6 probe 16856-L19650	Xq26							
472	OPHN1 probe 02915-L02309	Xq12							
481	PAK3 probe 02911-L02305	Xq23							

Table 1. SALSA MLPA P106-C1 MRX probemix

* New in version C1 (from lot C1-0416 onwards).

¥ Changed in version C1 (from lot C1-0416 onwards). Small change in length, no change in hybridising sequence.

± These probes are located within, or close to, a very strong CpG island. A low signal of these probes can be due to incomplete sample DNA denaturation, e.g. due to the presence of salt in the sample DNA.

~ More variable. This probe has been reported to be deleted/duplicated in healthy individuals (various reports).

Table 2. P106 probes arranged according to chromosomal location

Table 2a. RPS6KA3 gene, Xp22.12

Length (nt)	SALSA MLPA probe	RPS6KA3 Exon	Ligation site NM_004586.2	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		stop codon	2221-2223 (ex 22)		
178	02907-L02301	Exon 21	2005-2006	ATCAGAGACTGA-CTGCTGCTCTTG	53.1 kb
364	02906-L02300	Exon 3	180-181	AAGGAAGGACAT-GAAAAGGCAGAT	4797 kb to ARX gene
		start codon	1-3 (ex 1)		

Some mutations in the RPS6KA3 gene, spanning 110 kb, cause mild mental retardation. Most mutations (incl. truncating) cause Coffin-Lowry syndrome. Coffin-Lowry syndrome is characterised by mental retardation and strange fingers, large ears, etc.

P259 Coffin-Lowry: contains more probes for RPS6KA3.

The NM_004586.2 sequence is a reference standard in the NCBI RefSeqGene project.

Table 2b. ARX gene, Xp21.3

Length (nt)	SALSA MLPA probe	ARX Exon	Ligation site NM_139058.2	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe
		stop codon	1898-1900 (ex 5)		
222	02898-L04200	Exon 4	1635-1634 reverse	GGCTGATGAAAG-CTGGGTGTCGGA	6.2 kb
195 *	18790-L24221	Exon 2	1151-1150 reverse	GCTGCCCGCAGA-GAGGCACACGCT	2.5 kb
229	13669-L15822	Exon 1	98-99	AGATCGCAATAA-TATCCGTTATAA	3572 kb to IL1RAPL1 gene
		start codon	212-214 (ex 1)		

* New in version C1.

Disruption/mutations in the ARX (11 kb) gene cause severe X-linked infantile spasms and mental retardation. • P189 RETT like: contains more probes for the ARX gene.

The NM_139058.2 sequence is a reference standard in the NCBI RefSeqGene project.

Table 2c. IL1RAPL1 gene, Xp21.3

Length (nt)	SALSA MLPA probe	IL1RAPL1 Exon	Ligation site NM_014271.3	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	509-511 (ex 2)		
292	02920-L02314	Exon 1	245-246	CAGCAAACAATC-GGGCACTTTGAG	201.5 kb
328	02921-L02315	Exon 2	518-519	AGATGAAAGCTC-CGATTCCACACT	493.7 kb
235	02922-L23556	Exon 3	716-717	TTGCCCAAAGTG-CTGGACTCAGTT	385.4 kb
427	02923-L23561	Exon 6	1226-1227	CTCTGACTGATA-AGCCACCCAAGC	8709 kb to TSPAN7 gene
		stop codon	2597-2599 (ex 11)		

Truncating mutations of IL1RAPL1 have been identified in families with X-linked non-syndromic mental retardation (MRX21). The IL1RAPL1 gene is 1370 kb long.

The NM_014271.3 sequence is a reference standard in the NCBI RefSeqGene project.

Table 2d. TSPAN7 (TM4SF2) gene, Xp11.4

Length (nt)	SALSA MLPA probe	TSPAN7 Exon	Ligation site NM_004615.3	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	70-72 (ex 1)		
160	02903-L02297	Exon 1	96-97	ATGGAGACCAAA-CCTGTGATAACC	114.1 kb
268	02904-23558	Exon 5	531-532	TGTGGTGTGCAG-AACTACACCAAC	10221 kb to PQBP1 gene
		stop codon	817-819 (ex 7)		

Please note that the last exons of TSPAN7 are in a region that is duplicated in some healthy individuals (variation 34415 of the TCAG database of genomic variants; frequency approximately 1:500). As a result, the 268 nt probe may show an increased signal in healthy persons. This duplication apparently does not disrupt the gene. Truncating mutations in this gene have been identified as the cause of mental retardation (MRX58). The TSPAN7 gene is 125 kb long.

The NM_004615.3 sequence is a reference standard in the NCBI RefSeqGene project.

Length (nt)	SALSA MLPA probe	PQBP1 Exon	Ligation site NM_005710.2	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	255-257 (ex 1)		
310	02918-L02878	Exon 1	155-156	AGATGAGTACAT-GTTTACGGGAGG	3.8 kb
391	03520-L02313	Exon 4	567-568	AAAAGTTGGACC-GGAGCCATGACA	4954 kb to HUWE1 gene
		stop codon	1050-1052 (ex 6)		

Table 2e. PQBP1 gene, Xp11.23

A variable phenotype of X-linked mental retardation is caused by mutation in the gene encoding the polyglutamine-binding protein-1 (PQBP1). Changes in an AG6 repeat in exon 5 of the PQBP1 gene causes mental retardation. This gene is only 5 kb long.

P259 Coffin-Lowry: contains more probes for PQBP1 gene.

The NM_005710.2 sequence represents transcript variant 1 and is a reference standard in the NCBI RefSeqGene project.

Table 2f. HUWE1 gene, Xp11.22

Length (nt)	SALSA MLPA probe	HUWE1 Exon	Ligation site NM_031407.5	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		stop codon	13551-13553 (ex 84)		
184	13919-L15456	Exon 61	8702-8703	ATCTGAGTCCAA-GGAGACCCTTGG	92.6 kb
256	13920-L23672	Exon 6	633-634	GCAGATGCTGGA-CAGACAGTGGAG	13510 kb to OPHN1 gene
		start codon	427-429 (ex 4)		

The total length of the HUWE1 gene is 155 kb. Duplications of the HUWE1 gene are associated with mental retardation: Froyen, G. et al., 2008, *Am J Hum Genet.* One large deletion is described in a "control sample" in the database of genomic variants: <u>http://dgv.tcag.ca/dgv/app/home</u>.

The NM_031407.5 sequence is a reference standard in the NCBI RefSeqGene project.

Table 2g. OPHN1 gene, Xq12

Length (nt)	SALSA MLPA probe	OPHN1 Exon	Ligation site NM_002547.2	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		stop codon	2701-2703 (ex 24)		
472	02915-L02309	Exon 21	2171-2172	TATCACCAGCAG-CATAGAACCCCC	133.1 kb
436	02914-L02308	Exon 12	1351-1352	AGGCCCTTTCAG-AAGCTAACAGAA	101.8 kb
409	02913-L23560	Exon 3	489-490	CAGACGCTGCAG-TCATTTCAGTTT	134.3 kb
371	02912-L02306	Exon 1	135-136	TGCTGCTTATCT-GGGAAGGCGATG	41204 kb to ACSL4 gene
		start codon	295-297 (ex 2)		

Mutations/deletions in the long OPHN1 gene (400 kb) cause syndromic X-linked mental retardation with epilepsy, rostral ventricular enlargement and cerebellar hypoplasia.

The NM_002547.2 sequence is a reference standard in the NCBI RefSeqGene project.

Length (nt)	SALSA MLPA probe	ACSL4 Exon	Ligation site NM_022977.2	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		stop codon	2639-2641 (ex 17)		
190 ~	02155-L15826	Exon 17	2534-2535	TAAGCCCAGAGC-CATGGACCCCTG	24.0 kb
148	02935-L02326	Exon 12	1880-1881	ATGTCTGCTTCT-GCTGCCCAATTG	65.1 kb
248	03512-L23557	Exon 1	173-174	GTCCCAGCGCTA-GCGGGCACGCGG	1390 kb to PAK3 gene
		start codon	506-508 (ex 4)		

Table 2h. ACSL4 (=FACL4) gene, Xq22.3

 \sim The 190 nt probe has been marked as more variable by some users. From version B1 onwards the hybridising sequence of this probe has been elongated. Please notify us on variable results obtained with our probes.

The ACSL4 (=FACL4) gene, total length of 92 kb, is not identified as an MRX gene. It encodes a form of Long chain acyl-CoA synthetase (LACS) and is expressed in several tissues, including brain. It has been suggested that the absence of ACSL4 might play a role in the development of mental retardation or other signs associated with Alport syndrome in these patients. Please note that the ACSL4 gene is in a region that is duplicated in some healthy individuals according to the <u>http://dgv.tcag.ca/dgv/app/home</u> database.

The NM_022977.2 sequence represents transcript variant 2 and is a reference standard in the NCBI RefSeqGene project.

Table 2i. PAK3 gene, Xq22.3

Length (nt)	SALSA MLPA probe	PAK3 Exon	Ligation site NM_002578.4	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	627-629(ex 5)		
385	02908-L03178	Exon 5	704-705	CGGGATTCTTCA-GCACTCAACCAC	40.5 kb
418	02909-L02303	Exon 10	1301-1302	CCACCCTCTGCT-GAAAATGCCAAT	52.8 kb
400	03521-L02304	Exon 17	2063-2064	ACTAATGGAACT-CCAGAGCTCCAG	4.0 kb
481	02911-L02305	Exon 18	2234-2233 reverse	TTAATTGCTTCC-TTTGCAGCGATA	113 kb to DCX gene
		stop codon	2259-2261 (ex 18)		

Mutations in the PAK3 gene have been reported as being the cause of non-syndromic mental retardation (MRX30). The total length of the PAK3 gene is 1370 kb.

The NM_002578.3 sequence represents transcript variant 2 and is a reference standard in the NCBI RefSeqGene project.

Table 2j. DCX gene, Xq23

Length (nt)	SALSA MLPA probe	DCX Exon	Ligation site NM_178152.2	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe
		stop codon	1213-1215 (ex 7)		
275	04124-L03481	Exon 4 (5)	864-865	GATGATGTGTTT-ATTGCCTGTGGT	67.9 kb
215	04123-L15828	Exon 3 (4)	756-757	GTCCTCACTGAT-ATCACAGAAGCC	9.8 kb
319 *	04121-L08390	Exon 2	NM_000555.3 295-296*	CAGGCTATGGAT-TCATTTACAACT	4675 kb to AGTR2 gene
		start codon	118-120 (ex 3)		

Mutations in the DCX gene (118 kb) are found to result in Lissencephaly ('smooth brain'), characterized by mental retardation and seizures.

• P061 Lissencephaly: contains more probes for DCX.

The NM_178152.2 sequence represents transcript variant 2 and is a reference standard in the NCBI RefSeqGene project.

* Probe 04121-L08390 targets a sequence that is not present in NM_178152.2.

Note: The DCX exon numbering has changed. From description version 17 onwards, we have adopted the NCBI exon numbering that is present in the NM_ sequences for the DCX gene. The exon numbering used here may differ from literature! The exon numbering used in previous versions of this product description can be found between brackets in Table 2j.

Table 2k. AGTR2 gene, Xq24

Length (nt)	SALSA MLPA probe	AGTR2 Exon	Ligation site NM_000686.4	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	208-210 (ex 3)		
355	02925-L02319	Exon 1	70-71	TGAGAGAACGAG-TAAGCACAGAAT	2.1 kb
130	13917-L02320	Exon 3	812-813	TTTCCCACCTGA-GAAATATGCCCA	20367 kb to ARHGEF6
		stop codon	1297-1299 (ex 3)		

Mutations in the AGTR2 gene have been reported as being the cause of non-syndromic mental retardation (MRX88), often accompanied by seizures. AGTR2 spans 4 kb of genomic DNA.

The NM_000686.4 sequence is a reference standard in the NCBI RefSeqGene project.

Table 2I. ARHGEF6 gene, Xq26.3

Length (nt)	SALSA MLPA probe	ARHGEF6 Exon	Ligation site NM_004840.2	Partial sequence (24 nt adjacent to ligation site)	Distance to next probe
		stop codon	2791-2793 (ex 22)		
202	02902-L04460	Exon 19	2439-2440	GATGCTCAAATC-CTTAAAGTGATC	31.9 kb
172	16857-L19651	Exon 9	1414-1415	ACAAAGTAGGAG-GTTGTCTACTGA	38.3 kb
443	16856-L19650	Exon 4	829-830	GTGGACGTTCCT-CTTCTCTTAGTG	35.5 kb
346	03719-L02293	Exon 1	532-533	CTAAAAAGACCA-TCTGTGATCCGG	11131 kb to FMR1 gene
		start codon	463-465 (ex 1)		

Mutations in the ARHGEF6 gene have been reported as being the cause of non-syndromic mental retardation (MRX46). ARHEF6 spans 115 kb of genomic DNA.

The NM_004840.2 sequence is a reference standard in the NCBI RefSeqGene project.

Table 2m. FMR1 gene, Xq27.3

Length (nt)	SALSA MLPA probe	FMR1 Exon	Ligation site NM_002024.5	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	230-232 (ex 1)		
166	02927-L03721	Exon 9	1059-1060	AAAAGCTAGAAG-CTTTCTCGAATT	12.9 kb
142	02928-L03720	Exon 16	1907-1908	ACTCCCGAACAG-ATAATCGTCCAC	556 kb to AFF2 gene
		stop codon	2126-2128 (ex 17)		

Defects in the FMR1 gene, spanning 40 kb, result in fragile X syndrome, characterised by moderate to severe mental retardation. Expansion of a trinucleotide repeat near the FMR1 gene is the most common defect of this gene. This expansion results in methylation of the promoter and inactivation of the FMR1 gene.

 ME029 FMR1/AFF2: The ME029 MS-MLPA probemix contains more FMR1 probes and allows detection of both copy number changes, as well as the detection of promoter methylation (in full mutation male samples) of the FMR1 and AFF2 (FMR2) genes. It is not possible to directly measure the length of the trinucleotide repeat by MLPA.

The NM_002024.5 sequence represents transcript variant ISO1 and is a reference standard in the NCBI RefSeqGene project.

Length (nt)	SALSA MLPA probe	AFF2 Exon	Ligation site NM_002025.3	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	480-482 (ex 1)		
154	03511-L04202	Exon 1	501-502	TCGACTTTTTCA-GAGACTGGGACT	161.1 kb
283	00493-L00066	Exon 3	978-979	GTCATAACCCTA-GCACTGTACTGG	175.5 kb
241	03516-L15823	Exon 5	1604-1605	CTCACTTCCATG-CATACTGCTGGA	118.4 kb
337	02932-L02323	Exon 11	2537-2538	GAACCAAGACCT-AACATCCCTTTG	31.3 kb
263	02933-L23673	Exon 20	4128-4129	CAGTGTCTCTCA-ACAACGTCTCCC	4734 kb to SLC6A8 gene
		stop codon	4413-4415 (ex 21)		

Table 2n. AFF2 (FMR2) gene, Xq28

The long, 500 kb, AFF2 (FMR2) gene is located at close distance (550 kb) from FMR1 and spans almost 500 kb. Similar to FMR1, expansion of a trinucleotide near the promoter can result in inactivation of the gene. Inactivation of the AFF2 gene has been associated with mental retardation, premature ovarian failure and obsessive-compulsive disorder.

• ME029 FMR1/AFF2: contains more probes for AFF2. This ME029 probemix can also be used to detect AFF2 promoter methylation. No MLPA product is available to determine the length of the trinucleotide repeat in AFF2 exon 1.

The NM 002025.3 sequence represents transcript variant 1 and is a reference standard in the NCBI RefSegGene project.

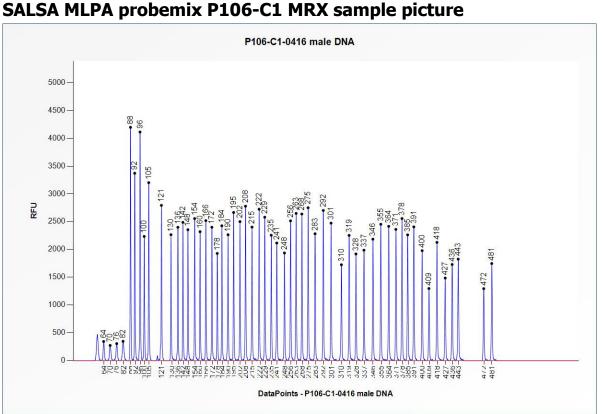
Table 20. SLC6A8 gene, Xg28

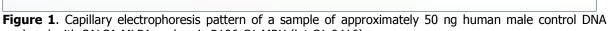
Length (nt)	SALSA MLPA probe	SLC6A8 Exon	Ligation site NM_005629.3	<u>Partial</u> sequence (24 nt adjacent to ligation site)	Distance to next probe
		start codon	279-281 (ex 1)		
208	01871-L15827	Exon 3 (4)	853-854	AGACTGTGCCAA-TGCCAGCCTGGC	2.5 kb
301	01876-L01445	Exon 8 (9)	1448-1449	ATCGCCTACCCG-CGGGCTGTCACG	706 kb to GDI1 gene
		stop codon	2184-2186 (ex 13)		

The SLC6A8 gene contains 13 exons and spans 9 kb. Mutations in SLC6A8 are reported to cause MRX. P049 SLC6A8: contains more probes for SLC6A8.

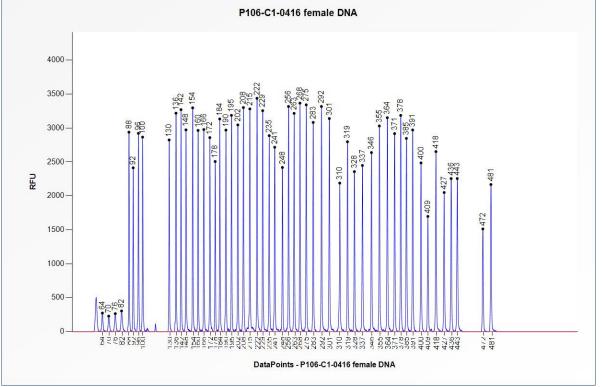
The NM 005629.3 sequence represents transcript variant 1 and is a reference standard in the NCBI RefSegGene project.

Note: The SLC6A8 exon numbering has changed. From description version 17 onwards, we have adopted the NCBI exon numbering that is present in the NM_ sequences for the SLC6A8 gene. The exon numbering used here may differ from literature! The exon numbering used in previous versions of this product description can be found between brackets in Table 2o.


· • • • –	. e= gee,	, q=0			
Length	SALSA	GDI1	Ligation site	Partial sequence (24 nt	Distance to
(nt)	MLPA probe	Exon	NM_001493.2	adjacent to ligation site)	next probe
		start codon	343-345 (ex 1)		
136	16875-L19669	Exon 1	347-348	CCTGACCATGGA-CGAGGAATACGA	3.9 kb
378	16874-L23559	Exon 7	1117-1118	TGGATGACATCA-TCATGGAGAACG	
		stop codon	1684-1686 (ex 11)		


Table 2p. GDI1 gene, Xg28

GDI1 is a small gene of 6 kb. However, the prevalence of GDI1 mutations (nonsense & missense) in nonspecific mental retardation may be 0.5 to 1%.


The NM_001493.2 sequence is a reference standard in the NCBI RefSeqGene project.

Note: Exon numbering might be different as compared to literature! Complete probe sequences are available on request: info@mlpa.com. Please notify us of any mistakes: info@mlpa.com.

Figure 2. Capillary electrophoresis pattern of a sample of approximately 50 ng human female control DNA analysed with SALSA MLPA probemix P106-C1 MRX (lot C1-0416).

Implemented Changes – compared to the previous product description versions
Version 18 – 30 September 2016 (55)
 Product description adapted to a new product version (version number changed, lot number added, small changes in Table 1 and Table 2, new picture included).
 Several small textual changes throughout the document.
Version 17 – 29 February 2016 (55)
 DCX and SLC6A8 exon numbering adjusted in Table 2j and 2o, respectively.
Version 16 (53)
- Various textual and lay-out changes.
 Updated link for "Database of Genomic Variants".
Version 15 (49)
- Product description adapted to a new product version (version number changed, lot number added,
small changes in Table 1 and Table 2, new picture included).
Version 14 (48)
 Electropherogram pictures using the new MLPA buffer (introduced in December 2012) added.
<i>Version 13 (46)</i> .
 Exon numbering of the DCX gene has been changed in Table 2j.
 Ligation sites of the probes targeting the DCX gene updated according to new version of the NM reference sequence.
- Small changes of probe lengths in Table 1 and 2 in order to better reflect the true lengths of the
amplification products.
- Remark on transcript variant used and RefSegGene standard added below Table 2.
Version 12 (46)
- New reference added on page 1.
- Warning added in Table 1, 229 nt probe 13669-L15822.
- Exon numbering of the DCX and AFF2 genes has been changed in Table 2.
- Data analysis method has been modified.
- Ligation sites of the probes targeting the FMR1 gene updated according to new version of the
NM_reference sequence.
- Small changes of probe lengths in Table 1 and 2 in order to better reflect the true lengths of the
amplification products.
- Various minor textual changes on page 1.
- Various minor layout changes

- Various minor layout changes.